Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6499 -
Telegram Group & Telegram Channel
🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:
import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6499
Create:
Last Update:

🧪 How-to: применить bootstrapping для оценки статистик

Когда данных немного или нет уверенности в распределении, bootstrapping приходит на помощь. Это техника, позволяющая оценить доверительные интервалы и стабильность метрик без строгих статистических предположений.

🚩 Что делать

Мы будем многократно пересэмплировать нашу выборку с возвращением и оценивать интересующую статистику (среднее, медиану, разницу, корреляцию и т.д.).

🚩 Шаги:

1️⃣ Импорт библиотек:

import numpy as np
from sklearn.utils import resample


2️⃣ Готовим данные:
data = np.array([12, 15, 14, 10, 8, 11, 13])  # пример


3️⃣ Запускаем бутстрэп:
boot_means = []

for _ in range(1000): # количество повторений
sample = resample(data, replace=True)
boot_means.append(np.mean(sample))


4️⃣ Оцениваем результат:
conf_int = np.percentile(boot_means, [2.5, 97.5])
print(f"95% доверительный интервал для среднего: {conf_int}")


🚩 На что обратить внимание:
📍 Используйте не менее 1000 итераций для устойчивых результатов.
📍 При маленьких выборках возможны смещения и высокая дисперсия.
📍 Если данные сильно несбалансированы — будьте осторожны с интерпретацией.

🚩 Основные преимущества:
✔️ Гибкость — можно применять к любым статистикам, особенно если неизвестно теоретическое распределение.
✔️ Без предположений — не требует априорных знаний о распределении в популяции.
✔️ Надёжность — работает даже при небольшом объёме выборки.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6499

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from tr


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA